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Noether’s theorem and Lie symmetries for time-dependent Hamilton-Lagrange systems
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Noether and Lie symmetry analyses based on point transformations that depend on time and spatial coor-
dinates will be reviewed for a general class of time-dependent Hamiltonian systems. The resulting symmetries
are expressed in the form of generators whose time-dependent coefficients follow as solutions of sets of
ordinary differential(“auxiliary” ) equations. The interrelation between the Noether and Lie sets of auxiliary
equations will be elucidated. The auxiliary equations of the Noether approach will be shown to admit invariants
for a much broader class of potentials, compared to earlier studies. As an example, we work out the Noether
and Lie symmetries for the time-dependent Kepler system. The Runge-Lenz vector of the time-independent
Kepler system will be shown to emerge as a Noether invariant if we adequately interpret the pertaining
auxiliary equation. Furthermore, additional nonlocal invariants and symmetries of the Kepler system will be
isolated by identifying further solutions of the auxiliary equations that depend on the explicitly known solution
path of the equations of motion. Showing that the invariants remain unchanged under the action of different
symmetry operators, we demonstrate that a unique correlation between a symmetry transformation and an
invariant does not exist.
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[. INTRODUCTION system is obtained as a classical Noether invariant—hence an
invariant that arises from a point transformation that depends

Analytical approaches aiming to analyze the particularon the vector of spatial coordinates and time t—if we
properties of a given dynamical system may successfullynterpret the pertaining auxiliary equation appropriately. Fur-
take advantage of the formalism of infinitesimal symmetrythermore, not previously reported nonlocal Noether invari-
transformations that have been worked out by [i¢ and ants and Lie symmetries of the Kepler system will be iso-
Noether[2]. In this paper, we will review these approaches.lated working out additional solutions of the respective
Specifically, both Noether and Lie symmetries will be auxiliary equations.
worked out on the basis of point transformations with varia- The variation of the Noether invariants will be shown to
tions depending on time and spatial coordinates for a generghnish under different Lie and Noether symmetry transfor-
class of explicitly time-dependent Hamiltonian systems. Thignations. We thereby demonstrate that a unique correlation
parallel treatment will enable us to compare these symmetrgetween a symmetry and a related invariant does not exist.
analyses, and to unveil both their close relationship and their We start our analysis with a review of infinitesimal point
differences. We will furthermore contribute to the ongoingtransformation and their generators in space-time. This will
discussion on how these symmetries are related to the invarbe particularly helpful to clarify our notation and to render
ants of a given dynamical system. our paper as self-contained as possible. In this context, the

The results of the symmetry analyses are obtained in therief presentation of Noether’s theorem will largely facilitate
form of generators of symmetry transformations. The parthe understanding of the Noether symmetry analysis of the
ticular form of these generators is constituted by time-general Hamiltonian system that is governed by the potential
dependent coefficients that are given as solutions of ordinary(qt), as well as the subsequent Lie symmetry analysis.
differential (“auxiliary” ) equations. In order to obtain the
full “spectrum” of these solutions, the auxiliary equations
andthe system’s equations of motion must be conceived as a

coupled se{3-5]. The particular solutions of the auxiliary  Gjyen a classicah-degree-of-freedom dynamical system

equations that decouple from the solutions of the equationgs particles, an infinitesimal point transformation denotes a
?f motion can then be seen to yield the generators of thgansformation that maps “points” in configuration space

fundamental” system symmetries. and time into infinitesimal neighboring “points™:

As an example, we work out the Noether and Lie symme-, - t)—>(d' '), the primes indicating the transformed quan-
try analyses for the time-dependent Kepler system. The spég’ a.t. P 9 d

cific auxiliary equations are directly obtained from the gen-tities. Formally, such a point transformation in the,t)

eral formulation derived beforehand. All known invariants SPace-time may be defined in terms of an infinitesimal pa-
and Lie symmetries will be shown to emerge from the solufa@metere by

tions of these auxiliary equations. It is shown in particular

that the Runge-Lenz vector of the time-independent Kepler t'=t+dt, St=e&(q), (1a

II. INFINITESIMAL POINT TRANSFORMATIONS

*Email address: j.struckmeier@gsi.de ai =gi+5q;, Sq=en(q,). (1b)
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In order to derive the transformation rules t'qqranddi for Finally, the variationéw=w(ﬁ’,5’,a’,t’)—W(c_i,a,a,t) of
the infinitesimal point transformation defined by Eq$a)
and (1b), we must be aware that the coordinatgsand the

time t are transformedimultaneouslyThe quantitysq; fol-
lows from the consideration thdf is given by the derivative

of the transformed coordinatg with respect to the trans- with U” the second “extension” of the generat(®),
formed timet’. According to the transformation ruléa)
and (1b), we thus find[6]

an arbitrary analytic functiow(ﬁ,a,a,t) is obtained as

sw=eU"W(q,q,q,t),

! ]
U"=U'+E 7 —,

=1 dq;
.,

dg/ dg+edn qgtem . S )
qU  dtredé  14ef =i +e(n—£q)+0(e%), g
ﬂf':ﬂi—zgm—f%:m??{—&li- (4)
which means that the first-order variation; is given by
_ o L We will make use of the second extensidh of the genera-
8qi=¢[ ni(q,t) — &(q,t)q;]. (1)  tor U in Sec. VB for a Lie symmetry analysis of a general
time-dependent Lagrangian system. Beforehand, the first ex-

The infinitesimal point transformatiola and (1b) thus  tensionU’ will be needed in our review of Noether’s theo-
uniquely determines the mapping of th¢. Similarly, we rem to be presented in the following section.

find the transformation rule for thg from
Ill. REVIEW OF NOETHER’'S THEOREM

!

q/ :dﬂ _ait e(ni— €9~ €9 =i+ e (- 286, — Eq) Noether’s theoremi2,7,8| relates the conserved quantities
| ’ g Lo
dt 1+eg of an n-degree-of-freedom Lagrangian systerfq,q,t) to
+0(e2) infinitesimal point transformations(1) that leave the

Lagrange actioridt invariant. We now work out this theo-
rem in the special form that emerges from the infinitesimal
point transformation(1). Among the general set of point
transformations defined by E@L), we consider exactly those

that leave the actiohdt for a given Lagrangian_(ci,a,t)

Given an arbitrary analytic functionu(g,t) of the invariant,

n-dimensional vector of particle positions and time, the func- . i .

tion’s variationsu=u(q’,t’) — u(q,t) that is induced by vir- L(g,q,t)dt=L"(q’,q’,t")dt’". (5
tue of the point transformatiofl) is given by

which yields the variationsg; to first order ine,

80;=e(m—2£q,— &q). (1d)

Note that we allow the Lagrangian itself to change its func-
au " au ~ tional form by virtue of the point transformation in order to
Su= r ot+ E o 6q;=¢eUu(q,t), satisfy the conditiori5). As the system’s equations of motion
=1 00 follow directly from the variation of the action integral by
virtue of Hamilton’s principlesfLdt=0, the condition(5)
implies the requirement that the particular symmetry trans-
formation (1) must sustain the form of the equations of mo-
n tion. This means that the point transformatidn maps the
U=¢&(q,1) % +2 7i(a,0) ai () _action integral into another representation of$haleaction
i=1 Qi integral. In other words, we doot transform a physical sys-
tem into a different one, but regard a given Lagrangian sys-

The variation v =v(q',q',t')~v(d,q,t) of an arbitrary  temL(q,q,t) from an infinitesimally dislodged “viewpoint”
analytic functionv(q,q,t) follows as: in order to isolate its inherent symmetries.
The functional relation betweerL’ and L may be ex-

pressed introducing a gauge functib(rﬁ,t),

the operatorU denoting the generator of the infinitesimal
point transformatior(1),

=8U'v(a,a,t),

Jv " v v .
Sv=—28t+ > | — 8q,+— &9
at =1\ 94 aq; . n
L'(q’,q't')=L+6L+---

which means that the first “extensiol)’ of the generator

> df
(2) is given by =L(q',q',t’)—sa+0(£2). (6)
n
Ufqurz P 3) For'tr']e relation(6) to hold in gen(iral, it is necgssary and
=1 = Jq sufficient[7] that f(q,t) depend omg andt only since, ac-
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constitutes a conserved quantity, i.e., a constant of motion for

determined byg—q’ andt—t'. Inserting Eq.(6) into the the Lagrange syster(q,q,t). The invariant given by Eq.
condition for the invariant Lagrange acti¢s), we get to first  (12) together with the differential equatid®) for f(q,t) is

order ing,

z 2 r_ (q t)
L(q’,q’,t")dt L(q q t)ydt+e——— T dt.

On the other hand, the connection bethEQ[i’,a’,t’) and

commonly referred to as Noether’'s theorem. Starting from
the initial condition (q(to),q(to)), the system’s state

(7) (ﬁ(t),a(t)) is uniquely determined by the equations of mo-

tion (11), which in turn follow from Hamilton’s principle
S/Ldt=0. Writing the variationsfL'dt’=0 of the infini-
tesimally transformed system in terms of the original coordi-

L(d,a,t) is determined by the “extended” operattt’ of  nates, we obtaiin additionto the equations of motiofill)

Eq. (3,

L(q',q",t")=L(q,q,t)+U'L(q,q,1).

the quantityl that is conserved by virtue of the symmetry
transformation(1). Thus, the requirementfL’'dt’=0 may

be seen as a generalization of Hamilton’s principle that
yields both the equations of moti@nd a phase-space sym-

To first order ine, Eq.(7) thus yields the auxiliary equation metry relation embodied in the invariantin general, Eq(9)

for f(q,t), replacingdt’ according todt’ = (1+¢e&)dt,

df(q,t)
dt

=¢L+U'L.

for f(d,t) depends orﬁ(t), hence on the solutions of the
equations of motiori11).
Equation (10) exposes that the Noether invaria(it2)

®) emerges simultaneously with the time evolution of the sys-

tem trajectory as the solution of the Euler-Lagrange equa-

With the operatordJ and U’, given by Egs.(2) and (3), tions (11). Alternatively, Noether's theorem can be inter-

respectively, the explicit form of Eq8) reads

df(q t)

preted as a coupled set of differential equations with the time
t the common independent variable. This coupled set consists
of both the Euler-Lagrange equations of motidi) and an

=L+ g_ additional conditional equation fdi(q,t). In this regard, it
N can be considered as a generalized Ermak@l system
+2 - _L+(- o _-g)ﬁ ) whose time-dependent solutions form together the invariant
S\ Mg A of Eq. (12.
We may conceive Eq9) as a condition for the yet unspeci- IV. NOETHER’S THEOREM IN HAMILTONIAN
fied functions&(q,t) and 7;(q,t). Only those point transfor- DESCRIPTION

mations(1) whose constituents and »; satisfy Eq.(9) main-
tain the Lagrange actiorhdt for the given Lagrangian

L(q,q,t).

From the definition of the Legendre transformation

The terms of Eq(9) can directly be split into a total time L(q,&,t)=i§1 pigi—H(a,p,t) (13
derivative and a sum containing the Euler-Lagrange equa-

tions of motion,

B, no | < .
gi| fAD—EL+ 2 (daqi—m)—— |+ 2 (&4~ )
i=1 &qi i=1
gL ddL)
é’qi_aﬁqi -

Along the system trajectorﬁ(t),ﬁ(t)) given by the solu-

tions of the Euler-Lagrange equations

that maps a given Lagrangiadﬁ,a,t) into the correspond-

ing HamiltonianH(q, p,t), one finds the relations
z?L - JL
P P g

(10

aL dH dH 14
A @ ar (14

Applying these transformation rules for the transition from a
Lagrangian description of a dynamical system to a Hamil-

i_ i i:o, i=1,...n, (11)  tonian description to the Noether invariant of E2), one
aq;  dt 5q, immediately gets
the related terms in Eq10) vanish. This means that the time n

integrall of the remaining terms

JL
I—E (&di— —.q—§L+f<q )

= (fqi—nopi—f;l pidi+ EH+1(q,1),

(12)  which simplifies to the Hamiltonian formulation of Noether’s

theorem,
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R .. R R canonical momentzﬁ if the sets of cubic, quadratic, and
|=§(q,t)H(q,p,t)—iZl 7i(q,)pi+f(a,t). (15  |inear momentum terms vanish separately—and correspond-
N ingly the remaining terms that do not depend on phe

The conditional equation fdr((i,t), given by Eq.(9), trans-

lates according to Eq$14), 2 E 1p? p] aq =0, (203
df(q,t) dH . N o o
at :_éa_gH"'i:E]_[gpiqi+77ipi+77ipi_§piqi]i g€
2 2 p.pj(zéu . aq) 0, (20D
which can be written in the form of a total time derivative, :
n an; 55)
- - - - - ————+V—|=0, 20c¢
gt §@H(@@,p.t 2 7i(a,0)pi+f(q,t) | =0. (16 2 P (cmi gt I (209
In the Hamiltonian formulation, the conditional equati@ 2 Vv c7§ v of 0 20
thus appears as the requirement that the total time derivative | T 5q. f_ TR (200
of the invariant(15) vanishes,
K The notationd;; in Eq. (20b) stands for the Kronecker sym-
=0. (17) bol. Since only a single momentum term appears in the sum

dt of Eg. (209, we may immediately conclude that the associ-

For a HamiltoniarH with at most quadratic momentum de- ated coefficient vanishes,

pendence, the forr(il5) of the Noether invariant is compat- -

ible with an ansatz function consisting of quadratic and lin- 9¢(q,t) _
ear terms in the canonical momentum that has been used aq;
earlier by Lewis and LeachlO]. We thereby observe that

this approach to work out an invariant is mathematicallyhence thatt(q,t)=4(t) must be a function of only. The
equivalent to a strategy based on Noether’s theorem for th'aouble sum in Eq.(20b) vanishes globally for anyp if

class of Hamiltonian systems. :
dn;19q; cancels the term up to a constant elemeayj of an
antisymmetric matrix &;;),

V. HAMILTONIAN SYSTEM WITH A GENERAL
TIME-DEPENDENT POTENTIAL 5 (_, )

7104,
aq; =%5|,B(t)+a”, ajj= —a;jj .

A. Noether symmetry analysis

To illustrate a particular Noether symmetry analysis, we
consider ther-degree-of-freedom system of particles moving |, general form, the functiom;(q,t) is thus given by
in an explicitly time-dependent potent‘d(q 1),

0.q S 3 i(q,)=38(t)q;+ (1) + i 21
H(p,q,t):izl%pinrV(q,t)_ (18) 7i(0,1)=3B(1) i+ (1) Ea,q] (21)

Herein, they;(t) denote arbitrary functions of time only. The

The canonical equations following from E(.8) are linear momentum terms of EG200) now require that

._&H_ - &H_ Y 19
Qi_(?_pi_piv pi__a_qi__(;_qi- (19 ﬂ:%_

In the following, we work out the particular invariahof the
Hamiltonian systeni18) that specializes the general Noether Inserting the partial time derivative of E¢R1), we find
invariant in the form of Eq(15). We hereby define a point

mapping that is consistent with the Noether symmetry trans- af(éi ) ) .

formation (1). For the particular Hamiltonia(l8), the gen- p =1B(t)q;+ ;(1).

eral condition fordl/dt=0 of Eq.(16) reads 9

d R n This partial differential equation, too, may be generally inte-
gt §(q,t)(2 3P+ V( qt)) E 7(d,H)p;+f(q,t)|=0.  grated to yield

Inserting the canonical equatiofi9), the emerging equation f(q, ,3('[)2 1q2+ E B . (22)

can only be fulfilled globally for any particular vector of
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Now that %; andf are specified by Eqg21) and (22), re-  variantl of Eq. (23) exists as well for the far more general

spectively, the invariant of Eq. (15) can be expressed in class of potential&/(q(t),t) that admit a solutioB(t) of Eq.
terms of the yet unknown constarets and functions of time (25) along the trajectoryi(t).

B(t) and (1), For the functionsy:(t), Eq.(24) yields the condition
I=BOH-BOZ, Fap+ B3, id +2 2 8 P 2 (DG w.u) 28
+Zl (i — ip). (23)  With y;(t) satisfying Eq(26), the ¢;-dependent terms of Eq.

(23) form the separate invariant

The functionsg(t) and #;(t) and thea;; are determined n
from condition(20d), induced by the terms not depending on | = (0 — i (1) D: 2
the canonical momentg, , v Z1 L= i pil. @7

. of > N We recall that the functiong);(t) emerge in Eq.21) as
IBV”L'BEJ’ Eﬂ,l i 5’_%_0' (24) separate integration “constants” for each indek
=1, ... n. Consequently, the invariafi27) and the related

To obtain the explicit form of Eq(24), we must insert Eq. auxiliary equation26) can be split into a set af equations,
(21) and the partial time derivative of E€R2). For potentials respectively,

V(q,t) that are not linear i, the :(t) terms are the only

ones that depend linearly on the canonical coordinates. Con- (Ogi—i(Hp=0, i=1,...n, (28)
sequently, the sum of these terms must vanish separately.
This means that two distinct differential equations are ob- Ly =g —gi(Hp;, i=1,...n, (29)

tained, namely for those terms that dot depend ory,;(t)
and the remaining terms that depend @r(t). The first
group of terms of Eq(24) form the following inhomoge-
neous linear differential equation f@(t), keeping in mind
thataij . _aji .

which means that the invariahtcan be written as a sum of
invariantsl =1 5+ Xl . The ¢;(t)-independent terms of Eq.
(23) thus form the invariant z, which reads, inserting the
Hamiltonian(18),

é(t)é Lg2+ B(H)| V(@(b), t)+2 v B(t)w " "
Zq q qi-— - . .
=1 2, at Iﬁ=ﬂ(t>{i21 %p?+V(q(t),t)}—B(t)iEl 1aip;
n n &V
+> > a;q;——=0. (25) L noo
=i o, +,3(t)i21 %qi2+i21 121 ai;qip; - (30

With V(q(t) t) the potential of Eq(18), Eq. (25) represents
an ordmary third-order differential equation along the solu- With £(q,t)=p(t) and 5;(q,t) given by Eq.(21), the gen-
tion pathq(t) of the canonical equatior(¢9) with the timet ~ €rators for the symmetry transformations and their first ex-
the independent variable. The general solution of @8 is  tensions yielding the Noether invariariy) and(30) for the
given by the linear combination of its homogeneous partclass of Hamiltonian systeni48) are given by
together with a particular solution of the inhomogeneous
equation. According to the existence and uniqueness theorem
for linear ordinary differential equations, a unique solution
B(t) of the initial value problem25) exists as long as its
coefficientsq(t), V(q(t),t), and its partial derivatives are
continuous along the independent variabl©therwise, the U’=U+2
function B(t) may cease to exist at some finite instant of !
time t;, which means that the related invariant exists within
the limited time spaty<t<t, only. Making use of the auxiliary equatiori5) and(26) for B(t)
With our understanding of the auxiliary equatit2b) as ~ and they;(t), respectively, we may directly prove thatt
an ordinary differential equation along theowntrajectory ~ Satisfies the Noether requireme(® to yield a total time
q(t) we differ from earlier studies of Lewis and Lead0]. derivative of a functionf(q,t) for the general class of La-
These authors conceived the auxiliary equation as a partiflrangian systemél3) with the Hamiltonian of Eq(18),
differential equation for potentialé(q,t). Only those poten-
tials that cons_titute_a ge_neral solution of Eg@5) were deT U;,L: E D s, B a;=0
picted to admit an invariant We observe here that the in- dt

. d
1Bai+2> aijqj"_‘//i(t)} e (31
] q

d
U=+ 2

. .. . . d
%qu_%ﬁqi"'; aijqj'J“/fi(t)L—--
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) d. Similar to the Noether symmetry analysis worked out in Sec.
Upl +éL= aﬂ(t)Z ot (=0, 11, this condition can only be fulfilled globally for any ve-
locity vectorq if and only if the sets of linear, guadratic, and
in agreement with Eq(22). In order to verify that the varia- cubic velocity terms vanish separately. This requirement
tion 8l 4 of the Noether invariant30) indeed vanishes, we leads to the following hierarchy of partial differential equa-
may straightforwardly show that tions that must be fulfilled for the given potenth(q,t) by

. . the functions&(q,t) and ;(q,t) of the generatot2),
Ugl =0 B(t) is a solution of Eq(25). '
.. 0%
With respect to thay;-dependent part ob)’ acting on the > > qujquZOr (359
invariant| v of Eqg. (29), we find, similarly, Ik 175k

P P > [2' G Lt > qgic P 0, (35b
Uyl = (D) -+ () — | [i(Da — ¢i(t)ai] 7T aaget T aao0
vit¥i aQI aqi
. . 2 2
= (O () — (D) g (1) =0, (32 T ( SAMNPAA KL B
i i i i 2 2qJ (9qj(?t + 2q] e +q; &qj &qj i atz ,
Obviously, the expressioth;,ilwi vanishes separately for (350
each index, as it should be for the distinct invariantd ,, .
PV NV an] Py oV 9E IV
Dl B
B. Lie symmetry analysis i d9;dq; 9q; 99;]  ot? dq; gt 7 dq;ot
Another approach to the treatment of the symmetries of a (350

dynamical system has been established py[ll.]eThe class Regarding Eq(358, we infer that all second-order deriva-
of Lie symmetries is defined by those point transformations > . .
(1) that leave the equations of motion invariant, tives of £(q,t) with respect to the coordinate must be

zero. This means thzﬁ(ﬁ,t) has the general form
Nt

aq;

0, i=1,...n. (33

i >
f(q,t>=; a;(t) gj+ BL(b), (36)
This coupled set of second-order equations corresponds to

the set of 2 first-order canonical equationd9). As the thea;(t) and B, (t) denoting yet unknown functions of time

equation of motior(33) is of second order, the condition for only. The derivatives o(q,t) that are contained in EG35)

a VaniShing variation reads may now be expressed as
. aV(ﬁ,t)) _ P FY: . .
Ul g+ =0, i=1,...n, 34 — = == (Ha:
A+~ i n (34 7, ~ (0 5= 2 eha+ A,
with U” the second extensiad) of the generatot). Physi- ey o2&
cally, a symmetry mapping of E¢33) that is associated with S (), —= > Zvj(t)qj +BL(1).
a vanishing variatiori34) means to transform the equation of gt t2 7

motion into thesameequation of motion in the new coordi-

nate system. Again, we thereby do not map our given physiEquation(35b) is therefore globally fulfilled if

cal system into a different one, but isolate the conditions to

be imposed on the point mappirid) in order to sustain the P n; : :

form of the equation of motion. As the particular dynamical m: aj Gyt @ dij (37)
system described by E@33) is given in explicit form and

does not involve velocity terms, E(34) simplifies to the &y, and &; meaning Kronecker symbols. The general

- form of ni(a,t) is obtained from a formal integration of Eq.
7'+ U aV(q,t)) _ (37), introducing yet undetermined functions of time (t)
' Jdi ' and ¢;(t),

which reads withJ and %! given by Eqs(2) and(4), - :
' m(q,t>=; [aj(aig+ (D ]+ (). (39)
PV
+2 7] =0. o - .
aqidt =1 7 d0;9q; The derivatives ofyp(q,t) following from Eq. (38) are

7i— 280, — éqi+ &

066605-6



NOETHER'S THEOREM AND LIE SYMMETRIES F®.. .. PHYSICAL REVIEW E 66, 066605 (2002

‘977i : . (92V
a_qj:ajqi+7ij+5ij2k a BLdi+ B3 2 Q=== 07q| ZﬁLm
oV
6’277- -2 bij__ 2 bjax|[=0, (423
i Jaq; dq;d
dq; (9t 1q|+7|,+5.,z aqu, ] d; qidq;
Vv
, HiO+ 2 ¢(1) 50 50-=0, (42b
I°mn; . .. g;dq;
F:; Lajaid;+ vi;q;]+ ¢ - ,
. oV oV Vv .
; anin+aj(Qja—m_Qia—%)+QJm Ek ax
The conditions the time functions;(t), B (t), ¥;;(t), and
¢;(t) must obey in order to yield a valid symmetry transfor- taa Y _ (420
mation (34) are obtained inserting(q,t) of Eq. (36) and 9; ag;t

7(q,t) from Eq. (38) together with their respective partial )
derivatives into Eqs(35¢ and (35d. Distinguishing be- As thg degrees of freedom are coupled by the poteljtlal, each
tween terms that depend cﬁ1 and those that do not. the equation stands for a set of coupled equations, with the

expression following from Eq(35¢ can be split into two index ranging fromi=1, ... n. In terms of the solutions of
p 9 d P the set of differential equation(89b) and(42), the generator
sums that must vanish separately,

U, of the symmetry transformatiof84) is given by

. . . d .
; Qj(27ij— BLGj) =0, (393 U = ,3|_('()+2i ai(t)q; EJFEi FﬂLQiJF; bjj q;
. Jd
. . . o’?V oV + (D) + ajgj| - (43

(39b Obviously, this operator formally agrees fay=0 with the
generator (31) of the Noether symmetry transformation
treated in Sec. V. Nevertheless, we must keep in mind that
the coefficients of the operatof31) and(43) are different in
general as they follow from a different set of auxiliary equa-
tions. Their interrelation becomes transparent considering
y”(t):%[;L(t)gijer”, (40)  that Egs.(42a and (42b) are partialg; derivatives of the
respective equation®5) and (26) of the Noether symmetry
analysis. Thus, Eq$429 and(42b) can be formally written

as the partialy; derivative of the Noether conditiof8),

Equation(393 can only be fulfilled globally if Z)/ij Z,BL&”
for all indicesi andj. This means after time integration

with b;; denoting the integration constants. With this result,
7:(q,t) of Eq. (38) may be rewritten as

df (q,t)

at =0, (44

J .
R . ——| UL+ B (L~
ni(q,t)=; a;(1)q;q; o4
the operatoitJ; given by the first extension of E¢43), the
1; o TA b LagrangiarL by Egs.(13) and(18), and the particular gauge
2 3B Gijtbijlaj+ it (4 functionf, for the actual system that corresponds to Q)

given by
The g-dependent terms of E¢35¢) account for Eq{(39b). no
Due to the coupling of the degrees of freedom that is induced L(q t)= ,BL(t)E 4qI + Z &i(1)q; .
by the potentiaIV(ﬁ,t), it represents a set af auxiliary "t
equations for the functions of timea(t), . .. ,a,(t). Apart Regarding the homogeneous equations for dhe we ob-

from particular potential&/(ﬁ,t),. this set may be solved serve that Eqg39b) and(42¢ impose a set of & conditions

only along the system patf(t),q(t) that emerges as the for then functions of timeai(tl. We conclude that—apart
solution of then equations of motiori33). from very specific potential¥/(qg,t)—these conditions can-
FinaIIy, the terms of the hierarch@5) that do not depend not be satisfied. This means that in most cases B§%) and

onq must Sa“sfy Eq(35d) Rep|ac|ngfy” accordmg to Eq. (42C) admit the trivial solution&(t) 0 only, hence no
(40), we get three independent differential equations for thex-related Lie symmetries exist. The one-dimensional time-
time functionspB(t), ¢;(t), and«;(t), dependent harmonic-oscillator system is one exception. It is
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easily shown that Eq939b) and (42¢) are compatible for 2 2 oV %4 40
this particular system, leading to the well-known additional 2 2 aijqj—:a12q2—31+a21ql—3
Lie symmetries[11] that exist in addition to the Noether i=1j=1 90 r r

symmetries. In Sec. VI, we demonstrate that these equations

also admit a nontrivial solution for the Kepler system— o

yielding a yet unreported Lie symmetry of this system. Ke- = 2120102~ 9201)=0
pler’s third law is shown to originate from a particular solu- '
tion of Eq. (4.2@ fo_r BL(t): We will furthermore show thaF for arbitrary constanta,,. Therefore, the auxiliary equation
the familiar invariants given by the energy conservation 25) has the nontrivial solutiora,,£0, independently of
law, the conservation of the angular momentum, and thé\ - N 127 = P 1y 9
Runge-Lenz vector are Noether symmetries. Finally, twdg(t)' Defininga;,=1, we thus obtain the separate invariant
new Noether invariants for the Kepler system are deriveda from Eq. (30),

from the solutions of Eq(25) with B(t) # const. | .= q1Ps— TPy (48)

Obviously, this invariant represents Kepler's second law,
stating that the angular momentum is a conserved quantity.
A. Equation of motion The associated generatdy of the symmetry transformation

is readily obtained from Eq.31) for a;,= —a,=1,

VI. EXAMPLE: KEPLER SYSTEM

The classical Kepler system is a two-body problem with
the mutual interaction following an inverse square force law.

In the frame of the reference body, the Cartesian coordinates U,= AN (49)
. . . a=d2 a1 .
d:.0, of its counterpart may be described in the plane of Jq; d0;
motion by .
The homogeneous part of E@5) forms a separate auxiliary
. a; _ equation forB(t). For our given potential of Eq47), we
0i+ u(t) =—===0, =12, (45  find the third-order equation
(q1+03)
. 2u(t) Au(t)
t)—pB(t —p(t =0. 50

with w(t)=G[my(t) + my(t)] the time-dependent gravita- AH=AM r3(t) A r3(t) (50

tional coupling strength that is induced by time-dependent

massesn, (t) andmy(t) of the interacting bodies. We may With the Hamiltonian(46), and 3(t) a solution of Eq.(50),

regard the equation of motio5) to originate from the the associated invariamg is given by
Hamiltonian

| s=B(H=ZB(t)(A1P1+02pz) + FB(1 (AT +03).

g 1.2, 1.2 5 (51)
H(q,p,t):§p1+§p2+V(q,t) (46)
The generators of the symmetry transformations pertaining
to the three linear independent solutions of Ezp) follow
from Eq.(31) as

containing the interaction potential
pw® ()

Uy = B0+ L3t ’ 4 (9) 52
o g, =Bi() - T2 Bi(1) U1 5q, T %5, (52)
Va3 +a3 r

V(q,t)=— (47)

For the conventional case of @nstantcoupling strength
_ [ «(t)=0], the auxiliary equation50) has the particular so-
B. Noether symmetry analysis lution B;(t)=1. With this solution, the invariant51) re-
The complete set of Noether invariarf29) and (30) to-  duces to
gether with its related generat@1) is obtained by finding
the complete set of solutions of the differential equations lg,-1=H,
(25) and (28) for the particular potentiald?7).
which provides the familiar result that the instantaneous sys-
1. Solutions related tqB(t) and g tem energyH that is given by the Hamiltoniat46) is a
We start with the inhomogeneous part of Eg5) origi- ~ conserved quantity iHH does not _depend on time explicitly._
nating from a nonvanishing antisymmetric matrx;{ that ~ The generator of the corresponding symmetry transformation
is contained in the general solution of E@Ob). For our  then simplifies to
actual two-dimensional system, this matrix cannot contain
more than one independent element, \dz;=a,,=0, a;, U _ i (53
= —a,;. The double sum of Eq25) thus reads, explicitly, Pi=1 ot
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As for all time-independent systems, two nonconstant solu©bviously, the Noether invariantéb8) represent the two
tions 3, (t) of Eq. (50) always exist. For the Kepler system components of the Runge-Lenz vector. This result contrasts

with =0, these solutions can be expressed as with the usual perception of the Runge-Lenz vector as a
“non-Noether invariant”[12]. Nevertheless, we must be
[t u(é(7))dr very careful writing the Noether invariants8) in this form.
Badt)= t,1+&cosf(7)’ The requiremenU{biI y, =0 of Eq.(32) for the first extension

of the generatof56) acting on the invariantsb) is satisfied
where the functioru(6) is one of the two solutions of the f and only if the invariant is written in the form of E455)
differential equation, with #;(t) given by Eq.(57). Only in this form is the right
distinction between spatial and time dependence made in Eq.
(55—with ;(t) written as a function of time only that is

defined along the solution pa(ﬁ(t),a(t)) of the equations
of motion.

d?u
—+[1

e u(e)=0,

C1+e cosa)

and 6(t) the polar angle of the elliptical trajectory with ec-
centricity e. These independent solutiofs y(t) induce two
additional nonlocal invarianttsg23 of the form of Eq.(51)

which—to the authors’ knowledge—have not been previ- Similar to the Noether analysis, we may systematically
ously reported. isolate the complete set of Lie symmetries of the equation of

motion (45) by finding all solutions of the auxiliary equa-

2. Solutions related tag(t) tions (39b) and (42) for the coefficientsx(t), B.(t), &(t),
and the constant matrixb(;) that constitute the Lie generator

C. Lie symmetry analysis

The y;-related invariant$29) are obtained from the solu-

tions of the auxiliary equation$28). Inserting our given (43).

equation of motion45) into Eqg.(28), we find 1. Solutions related tax(t)
. u(t) We start our Lie analysis with the time functions(t),
gi(t)+ 'ﬂi(t)%zo- (549 given as the simultaneous solutions of E@2b) and (420).

With Eq. (47) the potential of the Kepler system, the condi-

With ¢;(t) and ¢(t) a solution of the auxiliary equation tion (391 takes on the particular form

(54), the associated Noether invaria®9) read
. o G+ e =0, i=1,2 (59)
Ly =di(Oag—¢i(Ha;, i=12. (59 r

The two independent generators of the symmetry transformalne total time derivative of Eq59) inserted into Eq(42¢)

tion that result from the two linear independent solutions oftNen provides the condition for Eqe39h) and (429 to be
Eq. (54) are simultaneously satisfied,

d ) (@101 + @202) (G5 +03) = (@101 + @202) (A101+ G20).
Uy =it 1=12. (56)
|

The obvious solution is to identify the time functions(t)

It is again instructive to contemplate in particular the time-With the time evolution of the coordinateg(t),
independent case. We may easily convince ourselves by di- PR .
rect insertion that a(t)=cg(t), =12

The related generator of this Lie symmetry reads

¢i()=0a()d1(t) + da(t)Ga(t) (57
. J . .
is a solution of Eq(54) provided thatw(t)=0. Inserting Eq. UL o=la1()Gs+ ax()qp] o+ aa(D)ar+ aa(1)0z]
(57) and its total time derivative
J J

: . . i X ql—+q2—). (60)

(D =0H0+a30 5 90y "y
_ ) ) o We note that the identification of the time evolutiona{t)
into Eq. (55), the invariants read, explicitly, with the time evolution of the spatial coordinatg$t) holds

u for arbitrary time evolutionsu(t) of the coupling strength.
|¢/1=CI1CI§—Q2Q1Q2—Q1T' (583 The question whether a physical interpretation of this yet

unreported Lie symmetry of the Kepler system exists must
be left unanswered at this point. However, an interesting con-
| =02 — OOl o — [t (580) nection between the Lie symmetry generat6®) and the
v, G201 Qela027 Q27 Noether invariants of Eqg48) and (51) is revealed by let-
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ting the first extension of the operat@0) act onl, andl 4,
respectively. Provided thgi(t) is a solution of Eq(50), we
find

Ul Ja=0, Ul lz=0.
Obviously, the Noether invariantg andl ; are also invari-
ants with respect to the Lie symmetry that is generated b
Eq. (60). This shows that a unique correlation of invariants
and symmetry operators is not possible.

2. Solutions related tg8 (t) and by

In the next step, we work out the set of solutighgt) of
Eq. (429 for the potential(47). In our particular case, we
encounter the same condition for both indi¢esl,2, viz.,

. op(t)2u(t) 6u(t)
BLtBL 3 L3 s [b1105 + (b2t ba1)d1 02
+b,,95]=0. (61)

We may easily identify a particular solution of this inhomo-
geneous differential equation. Fg# (t)=0, Eq. (61) is
identically satisfied for anyﬁ(t) if bj;=by,=0 andbq,=
—b,,#0. From this nontrivial solution, we get the following
contribution to the generatg#3):

U = J J
|_,b—qz(9q1 Q1(9q2'

which agrees which the Noether operai9) that represents
the conservation law of the angular moment(48).

Each fundamental solutiog, ;(t), i=1,2,3 of the ho-
mogeneous part of third-order E@1),

m(t)
N

2u(t)
g 24V

r3

'B"L"_:.BL 0, (62

is associated with the generator

I 1 d 14
UL"BL,i:BLvi(t)E—’_ZBL,i(t) qiﬁ_ql+q2r9_qz .

PHYSICAL REVIEW E56, 066605 (2002

(61) is fulfilled identically for b;,=b,;=0 and b;;=by,
=1. The related contribution to the generatdB) reads

9, 9, 9
UL,BL:t—tE+§Q1a—%+§Qz§—%- (63

This generator depends on both the time and the spatial co-

Yrdinates. It thereby describes a symmetry between the spa-

tial and the time coordinates for this system, which reflects
Kepler’s third law. We observe that the auxiliary equations of
the Noether analysis of Sec. VIB do not admit a solution
leading to the generatd63). Therefore, the symmetry gen-
erated by Eq(63) is referred to as a “non-Noether symme-
try” [12]. Prince and Eliezer also showed that the Runge-
Lenz vector(58) can be derived on the basis of the non-
Noether symmetry generated by E§3). This means that
the variation ofl v vanishes under the action of this symme-

try transformation,
UI’—vBL=tI ¥, = O,

hence that the Runge-Lenz vector constitutes an invariant
with respect to this non-Noether symmetry. On the other
hand, we have shown that the Runge-Lenz vector in the rep-
resentation of Eq(55) with ¢;(t) given by Eq.(57) also
embodies a Noether invariant. We conclude that the classifi-
cation of the Runge-Lenz vector as a “non-Noether invari-
ant” is not justified. This indicates once more that it is not
possible to uniquely attribute an invariant to a symmetry
operator.

For u(t)=const, we can express the remaining two inde-
pendent solutions of the homogeneous part of &) in
explicit form. A comparison of Eq62) with the equation of
motion (45) yields
i

BLi)=ciai(t), =23,

hence to the integral representationgf;(t),

t
IBL,i(t):Cijt gi(ndr, =23, (64)
0

This operator formally agrees with the corresponding operal? @greement with an approach that has been worked out
tor (52) of the Noether symmetry analysis. Yet, the respec8arlier by Kraus¢13].

tive coefficientsg;(t) and B,_;(t) aredifferentin general as

they emerge as solutions from different auxiliary equations

(50) and (62).

For the time-independent systém(t) =consi, the func-
tion B 1(t) =1 is a particular solution of Ed61). The gen-
eratorUL,BL=l,

d
UL!BL:]': Ev

agrees with the Noether operat(@3) representing the en-
ergy conservation law.

A second particular solution of Eq61) for u(t)=0 is
easily shown to exist foB, (t) =t. With this solution, Eq.

3. Solutions related top;(t)

Finally, we work out the symmetries that are related to the
solutions of auxiliary equatiofd2b). For the potential47)
andi=1,2, this equation has the particular representation

p(t)

Bi(t)— r—5{3Qi[¢1(t)Q1+ $2(1) 92]

— $i(t)(97+03)}=0. (65)
With ¢4(t) and ¢,(t), two linear independent solutions of
the coupled set of second-order equati®®s), the related
part of the generatoi3) reads
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J J vation of the angular momentum. Furthermore, the solution
UL o= ¢’1(t)E+ ¢2(t)(9—qz- BL(t)=t of Eq. (61) for u(t)=0 reflects the symmetry that
is associated with Kepler’s third law.
Again, the auxiliary equation&5) for the coefficientsp;(t) Nevertheless, apart from these important particular solu-

differ from the respective equatiori§4) for the coefficients tions of the sets of auxiliary equations, a wide variety of

of its Noether counterpaf66). As the subsequent solutions solutions exists in addition that explicitly depends qft).

are different in general, we obtain different time evolutionsFor instance, in the case of a Hamiltonian system whose

of the Noether and Lie symmetries. . potentialV((j,t) does depend on time explicitly, the solution
In the case of the autonomous system witft) =0, the  g(t)=1 of Eq. (25) does not exist. Apart from particular

auxiliary equation(65) possesses a simple general solution.cases associated with quadratic potentials, the soly{®h

Comparing Eq(65) with the time derivative of the equation then depends on the particular time evolutionggf), and

of motion (45), . . o .
49 hence on the time evolution of the potenti&lq(t),t) and its

L , , , partial derivatives. As the time functiai(t) is given by the
qi(t)— - [30i(0101+0202) — Gi(a5 +d3)]=0, solution of the equation of motiofi9), the solutions(t) can
r only be found by integrating Eq25) simultaneouslywith
the equations of motio(19). This, in turn, means that the
existence of the invariant cannot help us in any way to ease
_ . the problem of solving the equations of motion by reducing
#iv=ca(t), =12 (66) the system’s order. However, the related invariant exists and

is a solution of Eq(65). Herein,c denotes an arbitrary con- Teflects a particular symmetry of the system’s time evolution.
stant. For the time-independent Kepler system, the function§he functional structure of the respective auxiliary equation
of time ¢, (t) and¢,(t) thus coincide up to a constant factor 1S Well defined as it represents—in conjunction with the set

with e tme evoluion o te velciiey (1) and(() e % SSlons SLmolon acdesed etarn M e e
finally note the interesting result that the variation of the y P ' P

Runge-Lenz vectof58) vanishes as well under the action of B(t) on the time evolution oﬁ(t) doesnotindicate that the

we immediately see that

the Lie symmetry generatady, ,, auxiliary equations are functions of bagrandt. By virtue of
their definition as integration “constants,” all coefficients of
U|'_,¢| 4 =0 the auxiliary equations must represent functions of time only.

. _ _ . _ We must therefore regamgi=q(t) as time-dependent coeffi-
which again confirms our observation that a unique correlagients of the auxiliary equations—defined along the system
tion between invaniant and symmetry does not exist. trajectoryﬁ(t) that emerges as the solution of the equations

_ _ of motion. This requirement appears natural looking back on
D. Discussion Noether’s theorem in the form of E¢L0). It indicates that

The characteristic functions of time that are contained irthe expression in brackets constitutes an invariant if and only
both the Noether as well as the Lie symmetry generatori:f the Euler-Lagrange terms of the second sum vanish. This is
reflect the specific symmetry properties of the dynamicaexactly the case along the system trajectory, defined as the
system in question. The Noether symmetry gener@ris  solution of the Euler-Lagrange equations.
determined by the set of time function@(t), zZ(t), and In our example _of the tl_me-lndependen_t_KepIer sy_stem,
constants ;) that follow as solutions from differential W& Present an explicit solutiaf®7) of the auxiliary equation
equations (25 and (28). Similarly, the time functions (54). T_he functionsy;(t) are understood as funct_|ons pf time
&(t), BL(1), gZ(t), and constants bi;)—following from satisfying Eq.(65). Of course, we are free to identify the

the auxiliary equation§39b) and (42—constitute the Lie t|m§ evolut|or.| of they(t) W'th the time gvolytlonof the
symmetry generatof43). The auxiliary equations for the particle coordinateg;(t) andq;(t), or combinations thereof.

time-dependent coefficients of the symmetry generators gerfVith this understanding, the functionf(t) remain func-

erally depend o the svstem’s otential( > 1), and on the tions of time only—which is crucial for Eq.32) to be satis-

arti)::ll dgrivativgé of th?/s otenri)ial Neve?t,he’less articularﬁed' The Runge-Lenz vector of the Kepler system can then
partie s p o €ss, p be conceived as a Noether invariant, generated by a particu-
solutions of these auxiliary equations may exist that are der-

2 _ _ lar operator of the typ&J,, .
coupled from the solutiong(t) of the equations of motion.
Then, the underly|r_19 symmetry reflects a fundamental prop- VIl. CONCLUSIONS
erty of the dynamical system. As examples, we quote the
solution B(t)=1 of Eq. (25) that exists for all cases where ~ We have worked out in detail the Noether and Lie sym-
the Hamiltonian(18—hence the potentiar(ﬁ,t)—does not Mmetry analyses for a Hamiltonian comprising the explicitly
depend on time explicitly. The corresponding invariapt  time-dependent general potenti‘dl(ci,t). In this general
=H represents the energy conservation law. Similarly, forform, the analyses resulted in specific sets of ordinary differ-
the Kepler system the solutian,= 1 of the inhomogeneous ential equations for the coefficients of the symmetry genera-
part of Eq.(25) provides the fundamental law for the conser- tors. The search for Noether and Lie symmetries could thus
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be reduced to the pursuit of the complete variety of solutionsheorem. In particular, the Runge-Lenz vector has been iden-
of the sets of auxiliary equations. tified as a Noether invariant. In this regard, we confirm the
The auxiliary equations of the Lie approach were foundclaim made by Sarlet and Cantrijii4] that “all integrals of
to agree with the partiad; derivative of the corresponding Lagrangian systems can indeed be found by a systematic
Noether equations. For one, this indicates the close relatiorexploration via Noether’s theorem.” This contrasts with the
ship between these two approaches. On the other hand, tagstement of Prince and EliezEt2] that “the Runge-Lenz
sets of auxiliary equations are obviously different, henceyector evades detection by Noether's theorem.” The reason
apart from particular isotropic systems associated with quagor this discrepancy originates in a different understanding of
dratic potentials, the solution functions are different in gen+ne coefficients of the auxiliary equations. By virtue of their

eral. This means that the time evolutions of Noether and I-"?jfefinition being functions of time only, the coefficients must
symmetries generally do not agree, hence that the set o

Noether symmetries cannot be regarded as a subset of the L@t depend o andq. Nevertheless, we are free to relate
symmetries. the time evolutionof these coefficients with the time evolu-

For the Noether approach, we have seen that there existsi@n of q(t) andq(t). With this enhanced understanding of
one-to-one correspondence between symmetry and a relatges sojutions of the auxiliary equations, a broader solution
invariant. The reason for this is that the Noether aux'“ary“spectrum” is obtained, which results in a wider range of
equations—in conjunction with the equations of motion—;.yariants emerging within the framework of Noether’s theo-

can always be cast into the form of a total time derivative.,. .\ aq 4 consequence, yet unknown nonlocal Noether sym-
This does not hold for the auxiliary equations that emergqnetﬁeS of the Kepler sistem could be isolated

from the Lie symmetry analysis. Therefore, the Lie symme-  ,ihermore, we have worked out additional solutions of

tries are not necessarily associated with closed-form expregq,, | o auxiliary equations for the Kepler system that yield

sions of conserved quantities. yet unreported symmetries of this system.

N De;]pendm_glll on their s_pecmc for(;n ;%r a glve|r|1 potintlal, the We have seen that the variations of the obtained invariants
oether auxiliary equation5) and(28) as well as the cor- |5 nigh with respect to different Noether as well as Lie sym-

responding Lie auxiliary equationt89h) and(42) may have metry operators. This demonstrates that a unique correspon-

explicit solutions, V.VhiCh then rgflect fu_ndament_al SYMME-qance between an invariant and a symmetry transformation
tries of the dynamical system in question. Particular solu-

. . . does not exist. As a consequence, a classification of invari-
tions of these equations may exist as well that decouple frorgntS with respect to a certain symmetry operation is not pos-

the system trajectorﬁ(t) representing the solution of the gjple.
equatiOnS of motion as the SyStem moves forward in time. Ana]yzing the Symmetries of a given dynamica| system,
On the other hand, additional solutions of the auxiliary equathe conditions under which certain solutions of the auxiliary
tions exist that explicitly depend on the evolution aft). equations cease to exist can be identified as the regions in
These solutions must be taken into consideration as well iparameter space where the related symmetries disappear.
order to obtain the full set system symmetries. This way, we may efficiently isolate the causes that render a
With this perception of the auxiliary equations, all invari- dynamical system less symmetric, hence more chaotic or
ants of the Kepler system could be derived from Noether'seven unstable.
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