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Noether’s theorem and Lie symmetries for time-dependent Hamilton-Lagrange systems

Jürgen Struckmeier* and Claus Riedel
Gesellschaft fu¨r Schwerionenforschung (GSI), Planckstrasse 1, 64291 Darmstadt, Germany

~Received 8 May 2002; published 12 December 2002!

Noether and Lie symmetry analyses based on point transformations that depend on time and spatial coor-
dinates will be reviewed for a general class of time-dependent Hamiltonian systems. The resulting symmetries
are expressed in the form of generators whose time-dependent coefficients follow as solutions of sets of
ordinary differential~‘‘auxiliary’’ ! equations. The interrelation between the Noether and Lie sets of auxiliary
equations will be elucidated. The auxiliary equations of the Noether approach will be shown to admit invariants
for a much broader class of potentials, compared to earlier studies. As an example, we work out the Noether
and Lie symmetries for the time-dependent Kepler system. The Runge-Lenz vector of the time-independent
Kepler system will be shown to emerge as a Noether invariant if we adequately interpret the pertaining
auxiliary equation. Furthermore, additional nonlocal invariants and symmetries of the Kepler system will be
isolated by identifying further solutions of the auxiliary equations that depend on the explicitly known solution
path of the equations of motion. Showing that the invariants remain unchanged under the action of different
symmetry operators, we demonstrate that a unique correlation between a symmetry transformation and an
invariant does not exist.

DOI: 10.1103/PhysRevE.66.066605 PACS number~s!: 45.20.2d, 45.50.Jf
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I. INTRODUCTION

Analytical approaches aiming to analyze the particu
properties of a given dynamical system may successf
take advantage of the formalism of infinitesimal symme
transformations that have been worked out by Lie@1# and
Noether@2#. In this paper, we will review these approache
Specifically, both Noether and Lie symmetries will b
worked out on the basis of point transformations with var
tions depending on time and spatial coordinates for a gen
class of explicitly time-dependent Hamiltonian systems. T
parallel treatment will enable us to compare these symm
analyses, and to unveil both their close relationship and t
differences. We will furthermore contribute to the ongoi
discussion on how these symmetries are related to the in
ants of a given dynamical system.

The results of the symmetry analyses are obtained in
form of generators of symmetry transformations. The p
ticular form of these generators is constituted by tim
dependent coefficients that are given as solutions of ordin
differential ~‘‘auxiliary’’ ! equations. In order to obtain th
full ‘‘spectrum’’ of these solutions, the auxiliary equation
and the system’s equations of motion must be conceived
coupled set@3–5#. The particular solutions of the auxiliar
equations that decouple from the solutions of the equat
of motion can then be seen to yield the generators of
‘‘fundamental’’ system symmetries.

As an example, we work out the Noether and Lie symm
try analyses for the time-dependent Kepler system. The
cific auxiliary equations are directly obtained from the ge
eral formulation derived beforehand. All known invarian
and Lie symmetries will be shown to emerge from the so
tions of these auxiliary equations. It is shown in particu
that the Runge-Lenz vector of the time-independent Kep
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system is obtained as a classical Noether invariant—henc
invariant that arises from a point transformation that depe
on the vector of spatial coordinatesqW and time t—if we
interpret the pertaining auxiliary equation appropriately. F
thermore, not previously reported nonlocal Noether inva
ants and Lie symmetries of the Kepler system will be is
lated working out additional solutions of the respecti
auxiliary equations.

The variation of the Noether invariants will be shown
vanish under different Lie and Noether symmetry transf
mations. We thereby demonstrate that a unique correla
between a symmetry and a related invariant does not ex

We start our analysis with a review of infinitesimal poi
transformation and their generators in space-time. This
be particularly helpful to clarify our notation and to rend
our paper as self-contained as possible. In this context,
brief presentation of Noether’s theorem will largely facilita
the understanding of the Noether symmetry analysis of
general Hamiltonian system that is governed by the poten
V(qW ,t), as well as the subsequent Lie symmetry analysis

II. INFINITESIMAL POINT TRANSFORMATIONS

Given a classicaln-degree-of-freedom dynamical syste
of particles, an infinitesimal point transformation denotes
transformation that maps ‘‘points’’ in configuration spa
and time into infinitesimal neighboring ‘‘points’’:
(qW ,t)°(qW 8,t8), the primes indicating the transformed qua
tities. Formally, such a point transformation in the (qW ,t)
space-time may be defined in terms of an infinitesimal
rameter« by

t85t1dt, dt5«j~qW ,t !, ~1a!

qi85qi1dqi , dqi5«h i~qW ,t !. ~1b!
©2002 The American Physical Society05-1
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In order to derive the transformation rules forq̇i and q̈i for
the infinitesimal point transformation defined by Eqs.~1a!
and ~1b!, we must be aware that the coordinatesqi and the
time t are transformedsimultaneously. The quantitydq̇i fol-
lows from the consideration thatq̇i8 is given by the derivative
of the transformed coordinateqi8 with respect to the trans
formed timet8. According to the transformation rules~1a!
and ~1b!, we thus find@6#

q̇i85
dqi8

dt8
5

dqi1«dh i

dt1«dj
5

q̇i1«ḣ i

11«j̇
5q̇i1«~ḣ i2 j̇q̇i !1O~«2!,

which means that the first-order variationdq̇i is given by

dq̇i5«@ḣ i~qW ,t !2 j̇~qW ,t !q̇i #. ~1c!

The infinitesimal point transformation~1a! and ~1b! thus
uniquely determines the mapping of theq̇i8 . Similarly, we

find the transformation rule for theq̈i8 from

q̈i85
dq̇i8

dt8
5

q̈i1«~ḧ i2 j̇q̈i2 j̈q̇i !

11«j̇
5q̈i1«~ḧ i22j̇q̈i2 j̈q̇i !

1O~«2!,

which yields the variationdq̈i to first order in«,

dq̈i5«~ḧ i22j̇q̈i2 j̈q̇i !. ~1d!

Given an arbitrary analytic functionu(qW ,t) of the
n-dimensional vector of particle positions and time, the fun
tion’s variationdu5u(qW 8,t8)2u(qW ,t) that is induced by vir-
tue of the point transformation~1! is given by

du5
]u

]t
dt1(

i 51

n
]u

]qi
dqi5«Uu~qW ,t !,

the operatorU denoting the generator of the infinitesim
point transformation~1!,

U5j~qW ,t !
]

]t
1(

i 51

n

h i~qW ,t !
]

]qi
. ~2!

The variation dv5v(qW 8,qẆ 8,t8)2v(qW ,qẆ ,t) of an arbitrary

analytic functionv(qW ,qẆ ,t) follows as:

dv5
]v
]t

dt1(
i 51

n S ]v
]qi

dqi1
]v

]q̇i

dq̇i D 5«U8v~qW ,qẆ ,t !,

which means that the first ‘‘extension’’U8 of the generator
~2! is given by

U85U1(
i 51

n

h i8
]

]q̇i

, h i85ḣ i2 j̇q̇i . ~3!
06660
-

Finally, the variationdw5w(qW 8,qẆ 8,qẄ 8,t8)2w(qW ,qẆ ,qẄ ,t) of

an arbitrary analytic functionw(qW ,qẆ ,qẄ ,t) is obtained as

dw5«U9w~qW ,qẆ ,qẄ ,t !,

with U9 the second ‘‘extension’’ of the generator~2!,

U95U81(
i 51

n

h i9
]

]q̈i

,

h i95ḧ i22j̇q̈i2 j̈q̇i5
d

dt
h i82 j̇q̈i . ~4!

We will make use of the second extensionU9 of the genera-
tor U in Sec. V B for a Lie symmetry analysis of a gener
time-dependent Lagrangian system. Beforehand, the first
tensionU8 will be needed in our review of Noether’s theo
rem to be presented in the following section.

III. REVIEW OF NOETHER’S THEOREM

Noether’s theorem@2,7,8# relates the conserved quantitie

of an n-degree-of-freedom Lagrangian systemL(qW ,qẆ ,t) to
infinitesimal point transformations~1! that leave the
Lagrange actionLdt invariant. We now work out this theo
rem in the special form that emerges from the infinitesim
point transformation~1!. Among the general set of poin
transformations defined by Eq.~1!, we consider exactly those

that leave the actionLdt for a given LagrangianL(qW ,qẆ ,t)
invariant,

L~qW ,qẆ ,t !dt5
!

L8~qW 8,qẆ 8,t8!dt8. ~5!

Note that we allow the Lagrangian itself to change its fun
tional form by virtue of the point transformation in order
satisfy the condition~5!. As the system’s equations of motio
follow directly from the variation of the action integral b
virtue of Hamilton’s principled*Ldt50, the condition~5!
implies the requirement that the particular symmetry tra
formation ~1! must sustain the form of the equations of m
tion. This means that the point transformation~1! maps the
action integral into another representation of thesameaction
integral. In other words, we donot transform a physical sys
tem into a different one, but regard a given Lagrangian s

temL(qW ,qẆ ,t) from an infinitesimally dislodged ‘‘viewpoint’’
in order to isolate its inherent symmetries.

The functional relation betweenL8 and L may be ex-
pressed introducing a gauge functionf (qW ,t),

L8~qW 8,qẆ 8,t8!5L1dL1•••

5L~qW 8,qẆ 8,t8!2«
d f

dt
1O~«2!. ~6!

For the relation~6! to hold in general, it is necessary an
sufficient @7# that f (qW ,t) depend onqW and t only since, ac-
5-2



n

i-

u

e

for

om

o-

di-

ry

hat
-

e

ys-
ua-
r-
ime
ists

iant

a
il-

’s

NOETHER’S THEOREM AND LIE SYMMETRIES FOR . . . PHYSICAL REVIEW E 66, 066605 ~2002!
cording to Eq.~1c!, the transformationqẆ °qẆ 8 is uniquely
determined byqW °qW 8 and t°t8. Inserting Eq.~6! into the
condition for the invariant Lagrange action~5!, we get to first
order in«,

L~qW 8,qẆ 8,t8!dt85L~qW ,qẆ ,t !dt1«
d f~qW ,t !

dt
dt. ~7!

On the other hand, the connection betweenL(qW 8,qẆ 8,t8) and

L(qW ,qẆ ,t) is determined by the ‘‘extended’’ operatorU8 of
Eq. ~3!,

L~qW 8,qẆ 8,t8!5L~qW ,qẆ ,t !1«U8L~qW ,qẆ ,t !.

To first order in«, Eq. ~7! thus yields the auxiliary equatio
for f (qW ,t), replacingdt8 according todt85(11«j̇)dt,

d f~qW ,t !

dt
5 j̇L1U8L. ~8!

With the operatorsU and U8, given by Eqs.~2! and ~3!,
respectively, the explicit form of Eq.~8! reads

d f~qW ,t !

dt
5 j̇L1j

]L

]t

1(
i 51

n S h i

]L

]qi
1~ ḣ i2q̇i j̇ !

]L

]q̇i
D . ~9!

We may conceive Eq.~9! as a condition for the yet unspec
fied functionsj(qW ,t) andh i(qW ,t). Only those point transfor-
mations~1! whose constituentsj andh i satisfy Eq.~9! main-
tain the Lagrange actionLdt for the given Lagrangian

L(qW ,qẆ ,t).
The terms of Eq.~9! can directly be split into a total time

derivative and a sum containing the Euler-Lagrange eq
tions of motion,

d

dt F f ~qW ,t !2jL1(
i 51

n

~jq̇i2h i !
]L

]q̇i
G1(

i 51

n

~jq̇i2h i !

3S ]L

]qi
2

d

dt

]L

]q̇i
D 50. ~10!

Along the system trajectory„qW (t),qẆ (t)… given by the solu-
tions of the Euler-Lagrange equations

]L

]qi
2

d

dt

]L

]q̇i

50, i 51, . . . ,n, ~11!

the related terms in Eq.~10! vanish. This means that the tim
integral I of the remaining terms

I 5(
i 51

n

~jq̇i2h i !
]L

]q̇i

2jL1 f ~qW ,t ! ~12!
06660
a-

constitutes a conserved quantity, i.e., a constant of motion

the Lagrange systemL(qW ,qẆ ,t). The invariant given by Eq.
~12! together with the differential equation~9! for f (qW ,t) is
commonly referred to as Noether’s theorem. Starting fr

the initial condition „qW (t0),qẆ (t0)…, the system’s state

„qW (t),qẆ (t)… is uniquely determined by the equations of m
tion ~11!, which in turn follow from Hamilton’s principle
d*Ldt50. Writing the variationd*L8dt850 of the infini-
tesimally transformed system in terms of the original coor
nates, we obtainin addition to the equations of motion~11!
the quantityI that is conserved by virtue of the symmet
transformation~1!. Thus, the requirementd*L8dt850 may
be seen as a generalization of Hamilton’s principle t
yields both the equations of motionand a phase-space sym
metry relation embodied in the invariantI. In general, Eq.~9!

for f (qW ,t) depends onqW (t), hence on the solutions of th
equations of motion~11!.

Equation ~10! exposes that the Noether invariant~12!
emerges simultaneously with the time evolution of the s
tem trajectory as the solution of the Euler-Lagrange eq
tions ~11!. Alternatively, Noether’s theorem can be inte
preted as a coupled set of differential equations with the t
t the common independent variable. This coupled set cons
of both the Euler-Lagrange equations of motion~11! and an
additional conditional equation forf (qW ,t). In this regard, it
can be considered as a generalized Ermakov@9# system
whose time-dependent solutions form together the invar
of Eq. ~12!.

IV. NOETHER’S THEOREM IN HAMILTONIAN
DESCRIPTION

From the definition of the Legendre transformation

L~qW ,qẆ ,t !5(
i 51

n

pi q̇i2H~qW ,pW ,t ! ~13!

that maps a given LagrangianL(qW ,qẆ ,t) into the correspond-
ing HamiltonianH(qW ,pW ,t), one finds the relations

pi5
]L

]q̇i

, ṗi5
]L

]qi
,

]L

]t
52

]H

]t
52

dH

dt
. ~14!

Applying these transformation rules for the transition from
Lagrangian description of a dynamical system to a Ham
tonian description to the Noether invariant of Eq.~12!, one
immediately gets

I 5(
i

n

~jq̇i2h i !pi2j(
i 51

n

pi q̇i1jH1 f ~qW ,t !,

which simplifies to the Hamiltonian formulation of Noether
theorem,
5-3
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I 5j~qW ,t !H~qW ,pW ,t !2(
i 51

n

h i~qW ,t !pi1 f ~qW ,t !. ~15!

The conditional equation forf (qW ,t), given by Eq.~9!, trans-
lates according to Eqs.~14!,

d f~qW ,t !

dt
52j

dH

dt
2 j̇H1(

i 51

n

@ j̇piq̇i1h i ṗi1ḣ i pi2 j̇piq̇i #,

which can be written in the form of a total time derivative

d

dt F j~qW ,t !H~qW ,pW ,t !2(
i 51

n

h i~qW ,t !pi1 f ~qW ,t !G50. ~16!

In the Hamiltonian formulation, the conditional equation~9!
thus appears as the requirement that the total time deriva
of the invariant~15! vanishes,

dI

dt
5
!

0. ~17!

For a HamiltonianH with at most quadratic momentum de
pendence, the form~15! of the Noether invariant is compa
ible with an ansatz function consisting of quadratic and l
ear terms in the canonical momentum that has been u
earlier by Lewis and Leach@10#. We thereby observe tha
this approach to work out an invariant is mathematica
equivalent to a strategy based on Noether’s theorem for
class of Hamiltonian systems.

V. HAMILTONIAN SYSTEM WITH A GENERAL
TIME-DEPENDENT POTENTIAL

A. Noether symmetry analysis

To illustrate a particular Noether symmetry analysis,
consider then-degree-of-freedom system of particles movi
in an explicitly time-dependent potentialV(qW ,t),

H~pW ,qW ,t !5(
i 51

n
1
2 pi

21V~qW ,t !. ~18!

The canonical equations following from Eq.~18! are

q̇i5
]H

]pi
5pi , ṗi52

]H

]qi
52

]V

]qi
. ~19!

In the following, we work out the particular invariantI of the
Hamiltonian system~18! that specializes the general Noeth
invariant in the form of Eq.~15!. We hereby define a poin
mapping that is consistent with the Noether symmetry tra
formation ~1!. For the particular Hamiltonian~18!, the gen-
eral condition fordI/dt50 of Eq. ~16! reads

d

dt F j~qW ,t !S (
i 51

n
1
2 pi

21V~qW ,t !D 2(
i 51

n

h i~qW ,t !pi1 f ~qW ,t !G50.

Inserting the canonical equations~19!, the emerging equation
can only be fulfilled globally for any particular vector o
06660
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canonical momentapW if the sets of cubic, quadratic, an
linear momentum terms vanish separately—and correspo
ingly the remaining terms that do not depend on thepi ,

(
i

(
j

1
2 pi

2pj

]j

]qj
50, ~20a!

(
i

(
j

pipj S 1
2 d i j

]j

]t
2

]h i

]qj
D50, ~20b!

(
i

pi S ] f

]qi
2

]h i

]t
1V

]j

]qi
D50, ~20c!

(
i

h i

]V

]qi
1

]j

]t
V1j

]V

]t
1

] f

]t
50. ~20d!

The notationd i j in Eq. ~20b! stands for the Kronecker sym
bol. Since only a single momentum term appears in the s
of Eq. ~20a!, we may immediately conclude that the asso
ated coefficient vanishes,

]j~qW ,t !

]qj
50, j 51, . . . ,n,

hence thatj(qW ,t)[b(t) must be a function oft only. The
double sum in Eq.~20b! vanishes globally for anypW if
]h i /]qj cancels thej̇ term up to a constant elementai j of an
antisymmetric matrix (ai j ),

]h i~qW ,t !

]qj
5 1

2 d i j ḃ~ t !1ai j , ai j 52aji .

In general form, the functionh i(qW ,t) is thus given by

h i~qW ,t !5 1
2 ḃ~ t !qi1c i~ t !1(

j 51

n

ai j qj . ~21!

Herein, thec i(t) denote arbitrary functions of time only. Th
linear momentum terms of Eq.~20c! now require that

] f

]qi
5

]h i

]t
.

Inserting the partial time derivative of Eq.~21!, we find

] f ~qW ,t !

]qi
5 1

2 b̈~ t !qi1ċ i~ t !.

This partial differential equation, too, may be generally in
grated to yield

f ~qW ,t !5b̈~ t !(
i 51

n
1
4 qi

21(
i 51

n

ċ i~ t !qi . ~22!
5-4
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Now that h i and f are specified by Eqs.~21! and ~22!, re-
spectively, the invariantI of Eq. ~15! can be expressed i
terms of the yet unknown constantsai j and functions of time
b(t) andc i(t),

I 5b~ t !H2ḃ~ t !(
i 51

n
1
2 qipi1b̈~ t !(

i 51

n
1
4 qi

21(
i 51

n

(
j 51

n

ai j qipj

1(
i 51

n

~ ċ iqi2c i pi !. ~23!

The functionsb(t) and c i(t) and theai j are determined
from condition~20d!, induced by the terms not depending o
the canonical momentapi ,

ḃV1b
]V

]t
1

] f

]t
1(

i 51

n

h i

]V

]qi
50. ~24!

To obtain the explicit form of Eq.~24!, we must insert Eq.
~21! and the partial time derivative of Eq.~22!. For potentials
V(qW ,t) that are not linear inqW , the c i(t) terms are the only
ones that depend linearly on the canonical coordinates. C
sequently, the sum of these terms must vanish separa
This means that two distinct differential equations are
tained, namely for those terms that donot depend onc i(t)
and the remaining terms that depend onc i(t). The first
group of terms of Eq.~24! form the following inhomoge-
neous linear differential equation forb(t), keeping in mind
that ai j 52aji :

b̂~ t !(
i 51

n
1
4 qi

21ḃ~ t !FV„qW ~ t !,t…1(
i 51

n
1
2 qi

]V

]qi
G1b~ t !

]V

]t

1(
i 51

n

(
j 51

n

ai j qj

]V

]qi
50. ~25!

With V„qW (t),t… the potential of Eq.~18!, Eq. ~25! represents
an ordinary third-order differential equation along the sol
tion pathqW (t) of the canonical equations~19! with the timet
the independent variable. The general solution of Eq.~25! is
given by the linear combination of its homogeneous p
together with a particular solution of the inhomogeneo
equation. According to the existence and uniqueness theo
for linear ordinary differential equations, a unique soluti
b(t) of the initial value problem~25! exists as long as its
coefficientsqW (t), V„qW (t),t…, and its partial derivatives ar
continuous along the independent variablet. Otherwise, the
function b(t) may cease to exist at some finite instant
time t1, which means that the related invariant exists with
the limited time spant0<t,t1 only.

With our understanding of the auxiliary equation~25! as
an ordinary differential equation along theknowntrajectory
qW (t), we differ from earlier studies of Lewis and Leach@10#.
These authors conceived the auxiliary equation as a pa
differential equation for potentialsV(qW ,t). Only those poten-
tials that constitute a general solution of Eq.~25! were de-
picted to admit an invariantI. We observe here that the in
06660
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variant I of Eq. ~23! exists as well for the far more gener
class of potentialsV„qW (t),t… that admit a solutionb(t) of Eq.
~25! along the trajectoryqW (t).

For the functionsc i(t), Eq. ~24! yields the condition

(
i 51

n S c̈ i~ t !qi1c i~ t !
]V

]qi
D50. ~26!

With c i(t) satisfying Eq.~26!, thec i-dependent terms of Eq
~23! form the separate invariant

I c5(
i 51

n

@ċ i~ t !qi2c i~ t ! pi #. ~27!

We recall that the functionsc i(t) emerge in Eq.~21! as
separate integration ‘‘constants’’ for each indexi
51, . . . ,n. Consequently, the invariant~27! and the related
auxiliary equation~26! can be split into a set ofn equations,
respectively,

c̈ i~ t !qi2c i~ t ! ṗi50, i 51, . . . ,n, ~28!

I c i
5ċ i~ t !qi2c i~ t !pi , i 51, . . . ,n, ~29!

which means that the invariantI can be written as a sum o
invariantsI 5I b1( i I c i

. Thec i(t)-independent terms of Eq

~23! thus form the invariantI b , which reads, inserting the
Hamiltonian~18!,

I b5b~ t !F(
i 51

n
1
2 pi

21V~qW ~ t !,t !G2ḃ~ t !(
i 51

n
1
2 qipi

1b̈~ t !(
i 51

n
1
4 qi

21(
i 51

n

(
j 51

n

ai j qipj . ~30!

With j(qW ,t)[b(t) andh i(qW ,t) given by Eq.~21!, the gen-
erators for the symmetry transformations and their first
tensions yielding the Noether invariants~27! and~30! for the
class of Hamiltonian systems~18! are given by

U5b~ t !
]

]t
1(

i
F 1

2 ḃqi1(
j

ai j qj1c i~ t !G ]

]qi
, ~31!

U85U1(
i

F 1
2 b̈qi2

1
2 ḃq̇i1(

j
ai j q̇ j1ċ i~ t !G ]

]q̇i

.

Making use of the auxiliary equations~25! and~26! for b(t)
and thec i(t), respectively, we may directly prove thatU8
satisfies the Noether requirement~8! to yield a total time
derivative of a functionf (qW ,t) for the general class of La
grangian systems~13! with the Hamiltonian of Eq.~18!,

Uc8L5
d

dt (
i

ċ i~ t !qi , b~ t !,ai j [0,
5-5
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Ub8L1 j̇L5
d

dt
b̈~ t !(

i

1
4 qi

2 , c i~ t ![0,

in agreement with Eq.~22!. In order to verify that the varia-
tion dI b of the Noether invariant~30! indeed vanishes, we
may straightforwardly show that

Ub8 I b50⇔b~ t ! is a solution of Eq.~25!.

With respect to thec i-dependent part ofU8 acting on the
invariant I c i

of Eq. ~29!, we find, similarly,

Uc i
8 I c i

5S c i~ t !
]

]qi
1ċ i~ t !

]

]q̇i
D @ċ i~ t !qi2c i~ t !q̇i #

5c i~ t !ċ i~ t !2ċ i~ t !c i~ t ![0. ~32!

Obviously, the expressionUc i
8 I c i

vanishes separately fo

each indexi, as it should be for then distinct invariantsI c i
.

B. Lie symmetry analysis

Another approach to the treatment of the symmetries o
dynamical system has been established by Lie@1#. The class
of Lie symmetries is defined by those point transformatio
~1! that leave the equations of motion invariant,

q̈i1
]V~qW ,t !

]qi
50, i 51, . . . ,n. ~33!

This coupled set ofn second-order equations corresponds
the set of 2n first-order canonical equations~19!. As the
equation of motion~33! is of second order, the condition fo
a vanishing variation reads

U9S q̈i1
]V~qW ,t !

]qi
D 50, i 51, . . . ,n, ~34!

with U9 the second extension~4! of the generatorU. Physi-
cally, a symmetry mapping of Eq.~33! that is associated with
a vanishing variation~34! means to transform the equation
motion into thesameequation of motion in the new coord
nate system. Again, we thereby do not map our given ph
cal system into a different one, but isolate the conditions
be imposed on the point mapping~1! in order to sustain the
form of the equation of motion. As the particular dynamic
system described by Eq.~33! is given in explicit form and
does not involve velocity terms, Eq.~34! simplifies to

h i91US ]V~qW ,t !

]qi
D 50,

which reads withU andh i9 given by Eqs.~2! and ~4!,

ḧ i22j̇q̈i2 j̈q̇i1j
]2V

]qi]t
1(

j 51

n

h j

]2V

]qi]qj
50.
06660
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Similar to the Noether symmetry analysis worked out in S
III, this condition can only be fulfilled globally for any ve

locity vectorqẆ if and only if the sets of linear, quadratic, an
cubic velocity terms vanish separately. This requirem
leads to the following hierarchy of partial differential equ
tions that must be fulfilled for the given potentialV(qW ,t) by
the functionsj(qW ,t) andh i(qW ,t) of the generator~2!,

(
j

(
k

q̇i q̇ j q̇k

]2j

]qj]qk
50, ~35a!

(
j

F2q̇i q̇ j

]2j

]qj]t
2(

k
q̇j q̇k

]2h i

]qj]qk
G50, ~35b!

(
j

F2q̇ j

]2h i

]qj]t
1S 2q̇ j

]V

]qi
1q̇i

]V

]qj
D ]j

]qj
G2q̇i

]2j

]t2
50,

~35c!

(
j

Fh j

]2V

]qi]qj
2

]V

]qj

]h i

]qj
G1

]2h i

]t2
12

]V

]qi

]j

]t
1j

]2V

]qi]t
50.

~35d!

Regarding Eq.~35a!, we infer that all second-order deriva
tives of j(qW ,t) with respect to the coordinatesqi must be
zero. This means thatj(qW ,t) has the general form

j~qW ,t !5(
j

a j~ t ! qj1bL~ t !, ~36!

thea j (t) andbL(t) denoting yet unknown functions of tim
only. The derivatives ofj(qW ,t) that are contained in Eq.~35!
may now be expressed as

]j

]qj
5a j~ t !,

]j

]t
5(

j
ȧ j~ t !qj1ḃL~ t !,

]2j

]qj]t
5ȧ j~ t !,

]2j

]t2
5(

j
ä j~ t !qj1b̈L~ t !.

Equation~35b! is therefore globally fulfilled if

]2h i

]qj]qk
5ȧ jd ik1ȧkd i j , ~37!

the d ik and d i j meaning Kronecker symbols. The gener
form of h i(qW ,t) is obtained from a formal integration of Eq
~37!, introducing yet undetermined functions of timeg i j (t)
andf i(t),

h i~qW ,t !5(
j

@ȧ j~ t !qiqj1g i j ~ t !qj #1f i~ t !. ~38!

The derivatives ofh(qW ,t) following from Eq. ~38! are
5-6
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]h i

]qj
5ȧ jqi1g i j 1d i j (

k
ȧkqk ,

]2h i

]qj]t
5ä jqi1ġ i j 1d i j (

k
äkqk ,

]2h i

]t2
5(

j
@â jqiqj1g̈ i j qj #1f̈ i .

The conditions the time functionsa j (t), bL(t), g i j (t), and
f i(t) must obey in order to yield a valid symmetry transfo
mation ~34! are obtained insertingj(qW ,t) of Eq. ~36! and
h i(qW ,t) from Eq. ~38! together with their respective partia
derivatives into Eqs.~35c! and ~35d!. Distinguishing be-
tween terms that depend onqW and those that do not, th
expression following from Eq.~35c! can be split into two
sums that must vanish separately,

(
j

q̇ j~2ġ i j 2b̈Ld i j !50, ~39a!

(
j

F ä j~2q̇ jqi1q̇iqj !1a j S 2q̇ j

]V

]qi
1q̇i

]V

]qj
D G50.

~39b!

Equation~39a! can only be fulfilled globally if 2ġ i j 5b̈Ld i j
for all indicesi and j. This means after time integration

g i j ~ t !5 1
2 ḃL~ t !d i j 1bi j , ~40!

with bi j denoting the integration constants. With this resu
h i(qW ,t) of Eq. ~38! may be rewritten as

h i~qW ,t !5(
j

ȧ j~ t !qiqj

1(
j

@ 1
2 ḃL~ t !d i j 1bi j #qj1f i~ t !. ~41!

The qW -dependent terms of Eq.~35c! account for Eq.~39b!.
Due to the coupling of the degrees of freedom that is indu
by the potentialV(qW ,t), it represents a set ofn auxiliary
equations for then functions of timea1(t), . . . ,an(t). Apart
from particular potentialsV(qW ,t), this set may be solved

only along the system pathqW (t),qẆ (t) that emerges as th
solution of then equations of motion~33!.

Finally, the terms of the hierarchy~35! that do not depend

on qẆ must satisfy Eq.~35d!. Replacingg i j according to Eq.
~40!, we get three independent differential equations for
time functionsbL(t), f i(t), anda i(t),
06660
,

d

e

b̂Lqi1ḃLF3
]V

]qi
1(

j
qj

]2V

]qi]qj
G12bL

]2V

]qi]t

22(
j

Fbi j

]V

]qj
2

]2V

]qi]qj
(

k
bjkqkG50, ~42a!

f̈ i~ t !1(
j

f j~ t !
]2V

]qi]qj
50, ~42b!

(
j

F â jqiqj1ȧ j S qj

]V

]qi
2qi

]V

]qj
D1qj

]2V

]qi]qj
(

k
ȧkqk

1a jqj

]2V

]qi]tG50. ~42c!

As the degrees of freedom are coupled by the potential, e
equation stands for a set ofn coupled equations, with the
index ranging fromi 51, . . . ,n. In terms of the solutions of
the set of differential equations~39b! and~42!, the generator
UL of the symmetry transformation~34! is given by

UL5FbL~ t !1(
i

a i~ t !qi G ]

]t
1(

i
F 1

2 ḃLqi1(
j

bi j qj

1f i~ t !1qi(
j

ȧ jqj G ]

]qi
. ~43!

Obviously, this operator formally agrees fora i[0 with the
generator ~31! of the Noether symmetry transformatio
treated in Sec. V. Nevertheless, we must keep in mind
the coefficients of the operators~31! and~43! are different in
general as they follow from a different set of auxiliary equ
tions. Their interrelation becomes transparent conside
that Eqs.~42a! and ~42b! are partialqi derivatives of the
respective equations~25! and ~26! of the Noether symmetry
analysis. Thus, Eqs.~42a! and~42b! can be formally written
as the partialqi derivative of the Noether condition~8!,

]

]qi
FUL8L1ḃL~ t !L2

d fL~qW ,t !

dt
G50, ~44!

the operatorUL8 given by the first extension of Eq.~43!, the
LagrangianL by Eqs.~13! and~18!, and the particular gauge
function f L for the actual system that corresponds to Eq.~22!
given by

f L~qW ,t !5b̈L~ t !(
i 51

n
1
4 qi

21(
i 51

n

ḟ i~ t !qi .

Regarding the homogeneous equations for thea i , we ob-
serve that Eqs.~39b! and~42c! impose a set of 2n conditions
for the n functions of timea i(t). We conclude that—apar
from very specific potentialsV(qW ,t)—these conditions can
not be satisfied. This means that in most cases Eqs.~39b! and
~42c! admit the trivial solutionaW (t)[0 only, hence no
aW -related Lie symmetries exist. The one-dimensional tim
dependent harmonic-oscillator system is one exception.
5-7
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easily shown that Eqs.~39b! and ~42c! are compatible for
this particular system, leading to the well-known addition
Lie symmetries@11# that exist in addition to the Noethe
symmetries. In Sec. VI, we demonstrate that these equat
also admit a nontrivial solution for the Kepler system
yielding a yet unreported Lie symmetry of this system. K
pler’s third law is shown to originate from a particular sol
tion of Eq. ~42a! for bL(t). We will furthermore show that
the familiar invariants given by the energy conservat
law, the conservation of the angular momentum, and
Runge-Lenz vector are Noether symmetries. Finally, t
new Noether invariants for the Kepler system are deriv
from the solutions of Eq.~25! with b(t)5” const.

VI. EXAMPLE: KEPLER SYSTEM

A. Equation of motion

The classical Kepler system is a two-body problem w
the mutual interaction following an inverse square force la
In the frame of the reference body, the Cartesian coordin
q1 ,q2 of its counterpart may be described in the plane
motion by

q̈i1m~ t !
qi

A~q1
21q2

2!3
50, i 51,2, ~45!

with m(t)5G@m1(t)1m2(t)# the time-dependent gravita
tional coupling strength that is induced by time-depend
massesm1(t) and m2(t) of the interacting bodies. We ma
regard the equation of motion~45! to originate from the
Hamiltonian

H~qW ,pW ,t !5 1
2 p1

21 1
2 p2

21V~qW ,t ! ~46!

containing the interaction potential

V~qW ,t !52
m~ t !

Aq1
21q2

2
52

m~ t !

r
. ~47!

B. Noether symmetry analysis

The complete set of Noether invariants~29! and ~30! to-
gether with its related generator~31! is obtained by finding
the complete set of solutions of the differential equatio
~25! and ~28! for the particular potential~47!.

1. Solutions related tob„t… and aij

We start with the inhomogeneous part of Eq.~25! origi-
nating from a nonvanishing antisymmetric matrix (ai j ) that
is contained in the general solution of Eq.~20b!. For our
actual two-dimensional system, this matrix cannot cont
more than one independent element, viz.a115a2250, a12
52a21. The double sum of Eq.~25! thus reads, explicitly,
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(
i 51

2

(
j 51

2

ai j qj

]V

]qi
5a12q2

mq1

r 3
1a21q1

mq2

r 3

5
m

r 3
a12~q1q22q2q1![0

for arbitrary constantsa12. Therefore, the auxiliary equatio
~25! has the nontrivial solutiona125” 0, independently of
b(t). Defininga1251, we thus obtain the separate invaria
I a from Eq. ~30!,

I a5q1p22q2p1 . ~48!

Obviously, this invariant represents Kepler’s second la
stating that the angular momentum is a conserved quan
The associated generatorUa of the symmetry transformation
is readily obtained from Eq.~31! for a1252a2151,

Ua5q2

]

]q1
2q1

]

]q2
. ~49!

The homogeneous part of Eq.~25! forms a separate auxiliary
equation forb(t). For our given potential of Eq.~47!, we
find the third-order equation

b̂~ t !2ḃ~ t !
2m~ t !

r 3~ t !
2b~ t !

4ṁ~ t !

r 3~ t !
50. ~50!

With the Hamiltonian~46!, andb(t) a solution of Eq.~50!,
the associated invariantI b is given by

I b5b~ t !H2 1
2 ḃ~ t !~q1p11q2p2!1 1

4 b̈~ t !~q1
21q2

2!.
~51!

The generators of the symmetry transformations pertain
to the three linear independent solutions of Eq.~50! follow
from Eq. ~31! as

Ub i
5b i~ t !

]

]t
1 1

2 ḃ i~ t !S q1

]

]q1
1q2

]

]q2
D . ~52!

For the conventional case of aconstantcoupling strength

@ṁ(t)50#, the auxiliary equation~50! has the particular so
lution b1(t)51. With this solution, the invariant~51! re-
duces to

I b1515H,

which provides the familiar result that the instantaneous s
tem energyH that is given by the Hamiltonian~46! is a
conserved quantity ifH does not depend on time explicitly
The generator of the corresponding symmetry transforma
then simplifies to

Ub1515
]

]t
. ~53!
5-8
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As for all time-independent systems, two nonconstant so
tionsb2,3(t) of Eq. ~50! always exist. For the Kepler system
with ṁ50, these solutions can be expressed as

b2,3~ t !5E
t0

t u„u~t!…dt

11« cosu~t!
,

where the functionu(u) is one of the two solutions of the
differential equation,

d2u

du2
1S 12

3

11« cosu Du~u!50,

andu(t) the polar angle of the elliptical trajectory with ec
centricity«. These independent solutionsb2,3(t) induce two
additional nonlocal invariantsI b2,3

of the form of Eq.~51!

which—to the authors’ knowledge—have not been pre
ously reported.

2. Solutions related toc i„t…

Thec i-related invariants~29! are obtained from the solu
tions of the auxiliary equations~28!. Inserting our given
equation of motion~45! into Eq. ~28!, we find

c̈ i~ t !1c i~ t !
m~ t !

r 3~ t !
50. ~54!

With c i(t) and ċ i(t) a solution of the auxiliary equation
~54!, the associated Noether invariants~29! read

I c i
5ċ i~ t !qi2c i~ t !q̇i , i 51,2. ~55!

The two independent generators of the symmetry transfor
tion that result from the two linear independent solutions
Eq. ~54! are

Uc i
5c i~ t !

]

]qi
, i 51,2. ~56!

It is again instructive to contemplate in particular the tim
independent case. We may easily convince ourselves by
rect insertion that

c i~ t !5q1~ t !q̇1~ t !1q2~ t !q̇2~ t ! ~57!

is a solution of Eq.~54! provided thatṁ(t)50. Inserting Eq.
~57! and its total time derivative

ċ i~ t !5q̇1
2~ t !1q̇2

2~ t !2
m

r ~ t !

into Eq. ~55!, the invariants read, explicitly,

I c1
5q1q̇2

22q2q̇1q̇22q1

m

r
, ~58a!

I c2
5q2q̇1

22q1q̇1q̇22q2

m

r
. ~58b!
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Obviously, the Noether invariants~58! represent the two
components of the Runge-Lenz vector. This result contra
with the usual perception of the Runge-Lenz vector a
‘‘non-Noether invariant’’ @12#. Nevertheless, we must b
very careful writing the Noether invariants~58! in this form.
The requirementUc i

8 I c i
50 of Eq.~32! for the first extension

of the generator~56! acting on the invariant~55! is satisfied
if and only if the invariant is written in the form of Eq.~55!
with c i(t) given by Eq.~57!. Only in this form is the right
distinction between spatial and time dependence made in
~55!—with c i(t) written as a function of time only that is

defined along the solution path„qW (t),qẆ (t)… of the equations
of motion.

C. Lie symmetry analysis

Similar to the Noether analysis, we may systematica
isolate the complete set of Lie symmetries of the equation
motion ~45! by finding all solutions of the auxiliary equa
tions ~39b! and~42! for the coefficientsaW (t), bL(t), fW (t),
and the constant matrix (bi j ) that constitute the Lie generato
~43!.

1. Solutions related toa i„t…

We start our Lie analysis with the time functionsa i(t),
given as the simultaneous solutions of Eqs.~39b! and~42c!.
With Eq. ~47! the potential of the Kepler system, the cond
tion ~39b! takes on the particular form

ä i~ t !1a i~ t !
m

r 3
50, i 51,2. ~59!

The total time derivative of Eq.~59! inserted into Eq.~42c!
then provides the condition for Eqs.~39b! and ~42c! to be
simultaneously satisfied,

~ ȧ1q11ȧ2q2!~q1
21q2

2!5~a1q11a2q2!~q1q̇11q2q̇2!.

The obvious solution is to identify the time functionsa i(t)
with the time evolution of the coordinatesqi(t),

a i~ t !5cqi~ t !, i 51,2.

The related generator of this Lie symmetry reads

UL,a5@a1~ t !q11a2~ t !q2#
]

]t
1@ȧ1~ t !q11ȧ2~ t !q2#

3S q1

]

]q1
1q2

]

]q2
D . ~60!

We note that the identification of the time evolution ofa i(t)
with the time evolution of the spatial coordinatesqi(t) holds
for arbitrary time evolutionsm(t) of the coupling strength.
The question whether a physical interpretation of this
unreported Lie symmetry of the Kepler system exists m
be left unanswered at this point. However, an interesting c
nection between the Lie symmetry generator~60! and the
Noether invariants of Eqs.~48! and ~51! is revealed by let-
5-9



b
ts

o-

g

ra
ec

n

-

l co-
spa-
cts
of

on
-
-

ge-
n-

e-

iant
er

rep-

sifi-
ri-
ot
try

e-

out

the

f

J. STRUCKMEIER AND C. RIEDEL PHYSICAL REVIEW E66, 066605 ~2002!
ting the first extension of the operator~60! act onI a andI b ,
respectively. Provided thatb(t) is a solution of Eq.~50!, we
find

UL,a8 I a50, UL,a8 I b50.

Obviously, the Noether invariantsI a and I b are also invari-
ants with respect to the Lie symmetry that is generated
Eq. ~60!. This shows that a unique correlation of invarian
and symmetry operators is not possible.

2. Solutions related tobL„t… and bij

In the next step, we work out the set of solutionsbL(t) of
Eq. ~42a! for the potential~47!. In our particular case, we
encounter the same condition for both indicesi 51,2, viz.,

b̂L1ḃL

m~ t !

r 3
1bL

2ṁ~ t !

r 3
2

6m~ t !

r 5
@b11q1

21~b121b21!q1q2

1b22q2
2#50. ~61!

We may easily identify a particular solution of this inhom
geneous differential equation. ForbL(t)50, Eq. ~61! is
identically satisfied for anyqW (t) if b115b2250 and b125
2b215” 0. From this nontrivial solution, we get the followin
contribution to the generator~43!:

UL,b5q2

]

]q1
2q1

]

]q2
,

which agrees which the Noether operator~49! that represents
the conservation law of the angular momentum~48!.

Each fundamental solutionbL,i(t), i 51,2,3 of the ho-
mogeneous part of third-order Eq.~61!,

b̂L1ḃL

m~ t !

r 3
1bL

2ṁ~ t !

r 3
50, ~62!

is associated with the generator

UL,bL,i
5bL,i~ t !

]

]t
1 1

2 ḃL,i~ t !S q1

]

]q1
1q2

]

]q2
D .

This operator formally agrees with the corresponding ope
tor ~52! of the Noether symmetry analysis. Yet, the resp
tive coefficientsb i(t) andbL,i(t) aredifferent in general as
they emerge as solutions from different auxiliary equatio
~50! and ~62!.

For the time-independent system@m(t)5const#, the func-
tion bL,1(t)51 is a particular solution of Eq.~61!. The gen-
eratorUL,bL51,

UL,bL515
]

]t
,

agrees with the Noether operator~53! representing the en
ergy conservation law.

A second particular solution of Eq.~61! for ṁ(t)50 is
easily shown to exist forbL(t)5t. With this solution, Eq.
06660
y
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~61! is fulfilled identically for b125b2150 and b115b22
5 1

6 . The related contribution to the generator~43! reads

UL,bL5t5t
]

]t
1 2

3 q1

]

]q1
1 2

3 q2

]

]q2
. ~63!

This generator depends on both the time and the spatia
ordinates. It thereby describes a symmetry between the
tial and the time coordinates for this system, which refle
Kepler’s third law. We observe that the auxiliary equations
the Noether analysis of Sec. VI B do not admit a soluti
leading to the generator~63!. Therefore, the symmetry gen
erated by Eq.~63! is referred to as a ‘‘non-Noether symme
try’’ @12#. Prince and Eliezer also showed that the Run
Lenz vector~58! can be derived on the basis of the no
Noether symmetry generated by Eq.~63!. This means that
the variation ofI c i

vanishes under the action of this symm
try transformation,

UL,bL5t8 I c i
50,

hence that the Runge-Lenz vector constitutes an invar
with respect to this non-Noether symmetry. On the oth
hand, we have shown that the Runge-Lenz vector in the
resentation of Eq.~55! with c i(t) given by Eq.~57! also
embodies a Noether invariant. We conclude that the clas
cation of the Runge-Lenz vector as a ‘‘non-Noether inva
ant’’ is not justified. This indicates once more that it is n
possible to uniquely attribute an invariant to a symme
operator.

For m(t)5const, we can express the remaining two ind
pendent solutions of the homogeneous part of Eq.~61! in
explicit form. A comparison of Eq.~62! with the equation of
motion ~45! yields

ḃL,i~ t !5ciqi~ t !, i 52,3,

hence to the integral representation ofbL,i(t),

bL,i~ t !5ciE
t0

t

qi~t!dt, i 52,3, ~64!

in agreement with an approach that has been worked
earlier by Krause@13#.

3. Solutions related tof i„t…

Finally, we work out the symmetries that are related to
solutions of auxiliary equation~42b!. For the potential~47!
and i 51,2, this equation has the particular representation

f̈ i~ t !2
m~ t !

r 5
$3qi@f1~ t !q11f2~ t ! q2#

2f i~ t !~q1
21q2

2!%50. ~65!

With f1(t) and f2(t), two linear independent solutions o
the coupled set of second-order equations~65!, the related
part of the generator~43! reads
5-10
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UL,f5f1~ t !
]

]q1
1f2~ t !

]

]q2
.

Again, the auxiliary equations~65! for the coefficientsf i(t)
differ from the respective equations~54! for the coefficients
of its Noether counterpart~56!. As the subsequent solution
are different in general, we obtain different time evolutio
of the Noether and Lie symmetries.

In the case of the autonomous system withṁ(t)50, the
auxiliary equation~65! possesses a simple general solutio
Comparing Eq.~65! with the time derivative of the equatio
of motion ~45!,

q̂i~ t !2
m

r 5
@3qi~ q̇1q11q̇2q2!2q̇i~q1

21q2
2!#50,

we immediately see that

f i~ t !5cq̇i~ t !, i 51,2 ~66!

is a solution of Eq.~65!. Herein,c denotes an arbitrary con
stant. For the time-independent Kepler system, the funct
of time f1(t) andf2(t) thus coincide up to a constant fact
with the time evolution of the velocitiesq̇1(t) andq̇2(t). We
finally note the interesting result that the variation of t
Runge-Lenz vector~58! vanishes as well under the action
the Lie symmetry generatorUL,f ,

UL,f8 I c i
50,

which again confirms our observation that a unique corre
tion between invariant and symmetry does not exist.

D. Discussion

The characteristic functions of time that are contained
both the Noether as well as the Lie symmetry genera
reflect the specific symmetry properties of the dynami
system in question. The Noether symmetry generator~31! is
determined by the set of time functionsb(t), cW (t), and
constants (ai j ) that follow as solutions from differentia
equations ~25! and ~28!. Similarly, the time functions
aW (t), bL(t), fW (t), and constants (bi j )—following from
the auxiliary equations~39b! and ~42!—constitute the Lie
symmetry generator~43!. The auxiliary equations for the
time-dependent coefficients of the symmetry generators g
erally depend onqW , the system’s potentialV(qW ,t), and on the
partial derivatives of this potential. Nevertheless, particu
solutions of these auxiliary equations may exist that are
coupled from the solutionsqW (t) of the equations of motion
Then, the underlying symmetry reflects a fundamental pr
erty of the dynamical system. As examples, we quote
solution b(t)51 of Eq. ~25! that exists for all cases wher
the Hamiltonian~18!—hence the potentialV(qW ,t)—does not
depend on time explicitly. The corresponding invariantI b
5H represents the energy conservation law. Similarly,
the Kepler system the solutiona1251 of the inhomogeneou
part of Eq.~25! provides the fundamental law for the conse
06660
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vation of the angular momentum. Furthermore, the solut
bL(t)5t of Eq. ~61! for ṁ(t)50 reflects the symmetry tha
is associated with Kepler’s third law.

Nevertheless, apart from these important particular so
tions of the sets of auxiliary equations, a wide variety
solutions exists in addition that explicitly depends onqW (t).
For instance, in the case of a Hamiltonian system wh
potentialV(qW ,t) does depend on time explicitly, the solutio
b(t)51 of Eq. ~25! does not exist. Apart from particula
cases associated with quadratic potentials, the solutionb(t)
then depends on the particular time evolution ofqW (t), and
hence on the time evolution of the potentialV„qW (t),t… and its
partial derivatives. As the time functionqW (t) is given by the
solution of the equation of motion~19!, the solutionb(t) can
only be found by integrating Eq.~25! simultaneouslywith
the equations of motion~19!. This, in turn, means that the
existence of the invariant cannot help us in any way to e
the problem of solving the equations of motion by reduci
the system’s order. However, the related invariant exists
reflects a particular symmetry of the system’s time evoluti
The functional structure of the respective auxiliary equat
is well defined as it represents—in conjunction with the
of equations of motion—a closed equation with the timet the
only independent variable. The dependence of a solu
b(t) on the time evolution ofqW (t) doesnot indicate that the
auxiliary equations are functions of bothqW andt. By virtue of
their definition as integration ‘‘constants,’’ all coefficients o
the auxiliary equations must represent functions of time on
We must therefore regardqW 5qW (t) as time-dependent coeffi
cients of the auxiliary equations—defined along the syst
trajectoryqW (t) that emerges as the solution of the equatio
of motion. This requirement appears natural looking back
Noether’s theorem in the form of Eq.~10!. It indicates that
the expression in brackets constitutes an invariant if and o
if the Euler-Lagrange terms of the second sum vanish. Th
exactly the case along the system trajectory, defined as
solution of the Euler-Lagrange equations.

In our example of the time-independent Kepler syste
we present an explicit solution~57! of the auxiliary equation
~54!. The functionsc i(t) are understood as functions of tim
satisfying Eq.~65!. Of course, we are free to identify th
time evolution of thec i(t) with the time evolutionof the
particle coordinatesqi(t) andq̇i(t), or combinations thereof
With this understanding, the functionsc i(t) remain func-
tions of time only—which is crucial for Eq.~32! to be satis-
fied. The Runge-Lenz vector of the Kepler system can th
be conceived as a Noether invariant, generated by a par
lar operator of the typeUc .

VII. CONCLUSIONS

We have worked out in detail the Noether and Lie sy
metry analyses for a Hamiltonian comprising the explici
time-dependent general potentialV(qW ,t). In this general
form, the analyses resulted in specific sets of ordinary dif
ential equations for the coefficients of the symmetry gene
tors. The search for Noether and Lie symmetries could t
5-11
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be reduced to the pursuit of the complete variety of soluti
of the sets of auxiliary equations.

The auxiliary equations of the Lie approach were fou
to agree with the partialqi derivative of the correspondin
Noether equations. For one, this indicates the close relat
ship between these two approaches. On the other hand
sets of auxiliary equations are obviously different, hen
apart from particular isotropic systems associated with q
dratic potentials, the solution functions are different in ge
eral. This means that the time evolutions of Noether and
symmetries generally do not agree, hence that the se
Noether symmetries cannot be regarded as a subset of th
symmetries.

For the Noether approach, we have seen that there exi
one-to-one correspondence between symmetry and a re
invariant. The reason for this is that the Noether auxilia
equations—in conjunction with the equations of motion
can always be cast into the form of a total time derivati
This does not hold for the auxiliary equations that eme
from the Lie symmetry analysis. Therefore, the Lie symm
tries are not necessarily associated with closed-form exp
sions of conserved quantities.

Depending on their specific form for a given potential, t
Noether auxiliary equations~25! and~28! as well as the cor-
responding Lie auxiliary equations~39b! and~42! may have
explicit solutions, which then reflect fundamental symm
tries of the dynamical system in question. Particular so
tions of these equations may exist as well that decouple f
the system trajectoryqW (t) representing the solution of th
equations of motion as the system moves forward in tim
On the other hand, additional solutions of the auxiliary eq
tions exist that explicitly depend on the evolution ofqW (t).
These solutions must be taken into consideration as we
order to obtain the full set system symmetries.

With this perception of the auxiliary equations, all inva
ants of the Kepler system could be derived from Noethe
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theorem. In particular, the Runge-Lenz vector has been id
tified as a Noether invariant. In this regard, we confirm t
claim made by Sarlet and Cantrijn@14# that ‘‘all integrals of
Lagrangian systems can indeed be found by a system
exploration via Noether’s theorem.’’ This contrasts with t
statement of Prince and Eliezer@12# that ‘‘the Runge-Lenz
vector evades detection by Noether’s theorem.’’ The rea
for this discrepancy originates in a different understanding
the coefficients of the auxiliary equations. By virtue of the
definition being functions of time only, the coefficients mu

not depend onqW and qẆ . Nevertheless, we are free to rela
the time evolutionof these coefficients with the time evolu

tion of qW (t) andqẆ (t). With this enhanced understanding
the solutions of the auxiliary equations, a broader solut
‘‘spectrum’’ is obtained, which results in a wider range
invariants emerging within the framework of Noether’s the
rem. As a consequence, yet unknown nonlocal Noether s
metries of the Kepler system could be isolated.

Furthermore, we have worked out additional solutions
the Lie auxiliary equations for the Kepler system that yie
yet unreported symmetries of this system.

We have seen that the variations of the obtained invaria
vanish with respect to different Noether as well as Lie sy
metry operators. This demonstrates that a unique corres
dence between an invariant and a symmetry transforma
does not exist. As a consequence, a classification of inv
ants with respect to a certain symmetry operation is not p
sible.

Analyzing the symmetries of a given dynamical syste
the conditions under which certain solutions of the auxilia
equations cease to exist can be identified as the region
parameter space where the related symmetries disap
This way, we may efficiently isolate the causes that rende
dynamical system less symmetric, hence more chaotic
even unstable.
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